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Abstract-An interesting approach to study pulmonary diseases
is the analysis of the respiratory muscle activity by means of
electromyographic (EMG) and vibromyographic (VMG)
signals. However, both signals are contaminated by cardiac
activity reflected in electrocardiographic and cardiac pulse
signals, respectively. Adaptive filtering and Singular Value
Decomposition techniques were applied to reduce cardiac
interference (CI) in signals recorded from three respiratory
muscles (genioglossus, sternomastoid and diaphragm) in 19
subjects breathing against progressively increased negative
pressure. The parameter Interference Relation (IR) is
presented and its reduction with filtering is highly correlated
with signal to noise ratio. This correlation indicates that IR is a
good index to evaluate the level of interference. The CI is
highest at low levels of ventilation when the respiratory
muscles are less active. Furthermore, the level of interference
depends on the selected muscle: the most affected muscle is the
diaphragm, then sternomastoid, and finally genioglossus. This
order is preserved for both EMG and VMG signals. That
indicates similar level of CI for signals reflecting electrical and
mechanical muscle activity. The reduction of CI by means of
the presented filtering techniques is shown by the parameter
IR especially in EMG signals.
Keywords -  Adaptive filtering, cardiac interference, electro-
myograpy, singular value decomposition, vibromyography

I. INTRODUCTION

Analysis of respiratory muscle activity and fatigue is a
promising technique to evaluate pulmonary diseases. Muscle
function depends on the level of ventilatory obstruction [1]
and the presence of pathologies such as chronic obstructive
pulmonary disease [2] or obstructive sleep apnea syndrome
(OSAS) [3]. The electromyographic (EMG) and
vibromyographic (VMG) signals are related to electrical and
mechanical muscle activity, respectively. Time and
frequency parameters calculated from these myographic
signals indicate muscle activity and fatigue during normal
and increased respiratory effort [2][4][5]. However, both
signals are usually corrupted by cardiac activity reflected in
electrocardiographic (ECG) and cardiac pulse (CP) signals,
respectively. The reduction of these corrupting interferences
is necessary in order to calculate parameters related directly
to the respiratory muscle activity so that reliable results and
conclusions are obtained. Power spectral density (PSD)
functions of EMG and ECG as well as VMG and CP signals
overlap in frequency (Fig. 1). Therefore, cardiac activity can
not be removed by means of a linear and invariant filter.

II. MATERIALS

A. Subjects

Eight male patients with stable OSAS [age (yr.):
53.8±10.5; height (cm): 177±8.2; weight (kg): 96.4±19.2]

and eleven male normal subjects [age (yr.): 41.7±4.3; height
(cm): 176.9±6.1; weight (kg): 82.4±8.9] have been studied.

Fig. 1. Power Spectral Density functions of a) EMG (red), ECG (blue)
and b) VMG (red), CP (blue) signals.

B. Signals and instrumentation

Four EMG and two VMG signals were simultaneously
recorded from three respiratory muscles: genioglossus,
sternomastoid and diaphragm. A surface EMG signal of
genioglossus muscle was recorded with two electrodes (Ag-
AgCl) placed on the submental zone (GEN-SEMG). In the
same area, an accelerometer (Entran EGA-10) was also
placed to record VMG signal (GEN-VMG). In addition,
genioglossus activity was also monitored by means of
intraoral surface electrodes located below the tongue (GEN-
EMG) [6]. Two surface electrodes and another
accelerometer were placed on the sternomastoid muscle to
record EMG (SMM-SEMG) and VMG (SMM-VMG)
signals, respectively.  Finally, surface EMG signal was
recorded from the diaphragm (DIA-SEMG).

The myographic signals were amplified and bandpass
filtered using a multichannel analog amplifier. The selected
bandwidths at -3 dB and the sampling frequencies were,
respectively: 5-200 Hz, 500 Hz (VMG) and 5-400 Hz, 1000
Hz (EMG).

C. Increased respiratory effort

During the experiment subjects were in a supine
position and breathed through a nose mask connected to a
low-resistance respiratory nonrebreathing valve. The
inspiratory port of the nonrebreathing valve was connected
to the external source of a negative pressure.

The experimental protocol consisted of breathing
without external pressure for 5 min before the negative
pressure was applied. The pressure was decreased at 90-
second intervals each time by the value of –7cm H2O until
the subject could no longer breath. The maximum pressure
in absolute value reached by the subject was defined as
maximum maintained pressure (MMP). For every subject,
pressure in each step of the experiment was expressed as a
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percentage of the MMP, in order to normalize the data and
to minimize possible influence of such factors like age and
difference in physical condition.

Myographic signals corresponding to four respiratory
cycles recorded when the subject breathed against a negative
pressure of 85% MMP are shown in Fig. 2. Cardiac activity,
with a periodicity of approximately 0.8 seconds, is observed
in these signals.

Fig. 2. Myographic signals recorded from a normal subject breathing
against a negative pressure of –35 cm H2O corresponding to 85% MMP.

Vertical dotted lines separate respiratory cycles.

 III. M ETHODS

A. Adaptive filtering

Adaptive filters estimate a deterministic signal,
myographic signal in our case, and remove the noise
uncorrelated with it: the cardiac signal. The assumption that
corrupted and corrupting signals are uncorrelated is valid
because of different biological sources of the signals:
muscle and heart, respectively.

 In this study, an adaptive transversal filter is used and
the weights are adjusted by means of a least mean square
(LMS) algorithm [7]. Primary input, d(k), is the recorded
signal composed of EMG or VMG signal, s(k), corrupted by
noise, n(k), that is ECG or CP signal, respectively. Filter
output is expressed as follows [7],

  (1)

where wi(k) are the L weights of the algorithm which are
varying in every iteration i and x(k) is the vector with the
last L samples of the reference signal. Algorithm tries to
adjust the output filter to the noise signal. In this way,
subtracting this output signal from the primary one we
obtain an error signal, e(k), that is the best approximation in
least squares to the signal of interest s(k). The weights are
changed by a LMS algorithm every iteration minimizing the
mean square value of the error estimation e(k) by means of
the filter gain µ [7]:

(2)

The following characteristics of a specific adaptive
filtering were found for its best performance reducing the
cardiac activity by means of a simulation study [8]:

- Parameter L is the sample number of the beat with the
shortest duration in the recording.

- A sequence of impulses synchronized with the QRS
complexes is used as reference input.

- An optimal weight vector for the initial conditions is
calculated to permit the algorithm to start working in
steady state.

- A delay of 0.1 s between primary and reference
inputs is considered.

- The parameter µ selected is 3⋅10-3
 and 10-2 in EMG

and VMG signals, respectively.

B. Singular value decomposition

An mxn matrix A of rank q can be decomposed by
means of the singular value decomposition (SVD) theorem
that verifies the existence of the following parameters [9]:

- Real positive numbers σ1≥σ2≥...≥σq≥0, called
singular values of A.

- mxm unitary matrix U=[u1 u2 ... um].
- nxn unitary matrix V=[v1 v2 ... vn].

such that matrix A can be expressed as

(3)

SVD is applied to corrupted myographic signals using
the near periodicity of cardiac activity which is different
from the respiratory rate expressed in the muscle activity
[10].  Recorded signal is distributed into the matrix A in row
vectors corresponding to segments of every beat. Then SVD
decomposes the matrix A with muscle and cardiac
information in orthogonal components according to (3).

The most dominant mode, Y=σ1u1v1
T, corresponds with

cardiac activity because of its nearly periodicity that has
been used to create the initial matrix A [11]. This main
mode is removed from the corrupted signal resulting in the
filtered myographic signal.

C. Automatic detection algorithm of QRS complexes

An algorithm to detect automatically QRS complexes
from the cardiac activity in EMG signals was implemented.
In both filtering methods presented previously, the
synchronization with this activity is needed.

In the algorithm, a matched filter with an impulse
response of an average ECG beat was used in EMG signal.
Another filter with an impulse response composed by the
convolution of two average ECG beats was also considered.
QRS complex instances were determined by means of a
disjunction Boolean condition referred to the maximum
outputs of both filters [10].
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D. Interference parameter

A parameter related to the level of interference is
defined and calculated from the autocorrelation function
(ACF) of squared myographic signal:

(4)

The ACF has its absolute maximum at the lag m=0,
rxx(0), and there are other local maximums in the lag
corresponding to the periodicity of the signal. In corrupted
myographic signals, the smallest periodicity is related to the
cardiac activity because the respiratory rate is usually much
longer, as we can see in Fig. 2. ACF of the SMM-SMEG
signal presented in Fig. 2, normalized in respect to rxx(0), is
shown in Fig. 3  where two parameters associated with
interference relation (IR) are marked: IRmax is the local
maximum around the mean beat duration (mbd±0.05s) and
IRmin is the minimum of the ACF. Finally, the parameter IR
is defined as the ratio between them: IRmax/IRmin.

Fig. 3. Autocorrelation function of SMM-SEMG signal with cardiac
noise and after filtering. Parameter IR is 9.01 and 1.05, respectively.

Theoretically, parameter IR would be unity without any
interference. Because of the characteristics of myographic
signals, small contribution from high frequency components
in the ACF produces slightly higher than one value in spite
of the lack of cardiac noise, IRmax>IRmin, as we can see in
Fig. 3. Parameter ∆IR is also defined as:

(5)

This parameter indicates in dB the level of interference
reduction in the recorded signal. Another parameter of
interest is signal to noise ratio (SNR) calculated from the
muscle and cardiac signals separated by the filtering.

IV. RESULTS

The evolution of parameter IR, as a function of %MMP
during the exercise in the corrupted myographic signals, is
presented in Fig. 4. High levels of cardiac interference in
diaphragm and sternomastoid muscle are shown by IR
values. The adaptive filtering technique was applied to
corrupted EMG and VMG signals. SVD method was also

used in the latter signal for its best performance with
medium and high levels of interference (SNR<5dB) [10]. In
Fig. 5, filtered myographic signals corresponding to the
same segments presented in Fig.2 are shown.

Fig. 4. Parameter IR as a function of %MMP during respiratory exercise
in every corrupted myographic signal. Mean value and standard deviation

of the population are shown.

Fig. 5. Recordings of myographic signals presented in Fig. 2 after
filtering process to reduce cardiac activity.

The results of filtering techniques by means of the IR in
the filtered myographic signals are shown in Fig. 6. In EMG
signals, mean values of IR are lower than 1.4 indicating the
almost total absence of cardiac interference. The IR is not
exactly one because of the high frequency components of
ACF as we commented before. In VMG signals, IR is a little
higher because their characteristics are similar to CP
interference, but its reduction respect to IR before filtering
(Fig. 2) is important.

The evolution of SNR during the exercise is shown in
Fig. 7. An increase of this parameter with higher levels of
applied pressure is found due to the increase of muscle
activity. Level of cardiac interference can be separated
depending on the selected muscle. The most affected muscle
is the diaphragm with the lowest SNR. Then, sternomastoid
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and, finally, genioglossus muscles. This classification is
obtained both in EMG and VMG signals.

Fig. 6. Parameter IR as a function of %MMP during respiratory exercise
in every filtered myographic signal. Mean value and standard deviation of

the population are shown.

Fig. 7. SNR as a function of %MMP during respiratory exercise in every
myographic signal. Mean value and standard deviation of the population

are shown.

Parameter ∆IR was calculated and its mean value of the
population was found highly correlated with the mean value
of SNR during the exercise: correlation coefficients in all
the signals, except GEN-SEMG with almost absence of
interference, are higher than 0.93 in absolute value. This
high correlation indicates that parameter IR is a good index
to evaluate the level of interference.

V. CONCLUSION

Two methods designed to reduce cardiac interference in
myographic signals are presented: adaptive filtering with
LMS algorithm and SVD. Both techniques were applied to
the signals recorded from three respiratory muscles
(genioglossus, sternomastoid, and diaphragm) during an
incremental respiratory effort exercise. Parameter
Interference Relation (IR) calculated from the ACF of
squared myographic signal was also presented. Reduction in
the value of IR with filtering was highly correlated with
SNR. This correlation indicates that IR is a good index to
evaluate the level of interference.

Cardiac interference was higher at lower levels of
ventilation when the respiratory muscles were less active.
Cardiac activity affected most significantly signals recorded
from the diaphragm, then sternomastoid, and finally

genioglossus muscles. This classification, true for both
EMG and VMG signals, indicates that cardiac activity
interferes similarly with indicators of electrical and
mechanical muscle activity. The reduction of cardiac
interference by means of the presented filtering techniques,
especially effective in EMG signals, was reflected by the
parameter IR.

Finally, the necessity of filtering cardiac interference
prior to the evaluation of respiratory muscles activity has
been demonstrated and two filtering techniques applied to
the signals from different respiratory muscles have been
presented, applied and validated.
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